초음파는 기체·액체·고체에 상관없이 매질이 있으면 전파된다. 초음파는 일반적으로 가청 주파수(20kHz) 이상의 주파수 음파를 가리키는데, 사람이 듣는 것을 목적으로 하지 않는 경우, 가청 주파수 내라도 초음파라고 부르고 있다. 초음파의 이용은 ①거리 계측이나 센싱 등 계측 신호로서 취급하는 경우, ②초음파 부양이나 세정 등 힘이나 에너지로서 취급하는 경우, ③센서나 필터 소자 등의 기능성 부품으로서 취급하는 경우로 나눌 수 있다. 또한 매질로 이용을 나누면, 고체 중의 이용은 초음파 탐상기, 금속의 절삭·가공이나 접합, 초음파 현미경, 클락용 수정 진동자, SAW 필터 소자 등이 있고, 액체 중(수중)에서는 초음파 진단장치, 어군탐지기, 유속계, 초음파 세정, 고체 입자의 분산·유화, 안개화 등 다방면에 이용된다. 이들에 대해 공기 중의 이용은 거리계나 차재용의 초음파 센서 등이 있는데, 그다지 많다고는 할 수 없다. 이것은 기체 중에 대출력의 초음파 에너지가 방사되기 어렵기 때문이다. 진동체로부터 방사되는 음향 파워는 매질에 고유의 값인 고유 음향 임피던스 ρc(ρ는 매질의 밀도, c는 매질 중의 소리 전파 속도)의 크기로 결정된다. 공기의 밀도 ρ는 액
최근 강력한 공중 초음파에 관한 다양한 연구가 이루어지고 있다. 그 중의 하나인 공중 초음파를 이용한 촉각 제시의 연구가 2008년에 시작됐다. 강력한 공중 초음파의 비선형 효과를 활용하는 기술의 대표 예로는 파라메트릭 어레이라고 하는 초지향성 스피커가 있는데, 그 기원은 1980년대까지 거슬러 올라간다. 파라메트릭 어레이와 촉각 제시의 페이즈드 어레이(Phased array)(이후 Airborne Ultrasound Tactile Display, AUTD)의 구성 요소는 거의 동일했지만, AUTD에서는 집속 빔에 의해 공간의 1점에 보다 강한 음장을 만들려고 한 것이 약간의 차이였다. 수천 파스칼이 넘는 음압, 즉 전형적인 공중 파라메트릭 어레이보다는 두 자리 이상 높은 에너지 밀도에 의해 촉각을 생성할 수 있다는 것이 확인되어 초음파 촉각 제시의 연구가 순조롭게 시작됐다. 이때 개발된 초음파 페이즈드 어레이는 강력 공중 초음파를 쉽게 만들어낼 수 있는 귀한 장치이기도 했다. 주변의 물체에 조사해 보면 경량 물체를 움직일 수 있는데다가, 음향류의 생성, 액체의 기화 촉진 등 현저한 효과를 눈앞에서 확인할 수 있어 공중 초음파 연구 영역이 확대되기도 했다.