건설업계에서는 미래의 취업자 부족 문제가 심각화되고 있으며, ‘신규 취업자 확보’와 ‘생산성 향상’이 시급한 과제로 대두되고 있다. 또한, 2024년 4월에는 건설업에서도 노동 시간 상한 규제가 시행되기도 하기 때문에 ‘근로 방식 개혁’을 더는 미룰 수 없는 상태이다. 이러한 과제의 해결책 중 하나로서 로봇에 의한 작업의 자동화나 서포트가 기대되고 있다. 다케나카코무덴 기술연구소에서는 과거 건설 로봇 개발의 사례와 현재의 건설 현장 과제를 분석해 현장에서 진정으로 요구되고 사용되는 로봇은 무엇인지를 고찰하고, 개발 방침을 책정한 후에 이 방침에 따른 로봇 개발을 추진하고 있다. 이 글에서는 최근의 로봇 개발 상황을 보고한다. 과거의 로봇 개발 필자 등은 과거에 개발된 건설 로봇을 조사해 보급에 이르지 못한 원인을 살펴봤다. 1980~2000년대까지 다케나카코무덴에서는 20종 이상, 건설업계에서는 160종 이상의 로봇이 개발됐는데, 이들 모두 건설 현장에서 시행하는 데에 그쳤으며 본격적으로 보급된 것은 거의 없었다. 필자 등은 이들 과거의 로봇이 보급되지 못한 주된 원인은 이하와 같다고 생각한다. · 기술노동자를 대체하기 위해 일련의 시공 작업을 자동화하려고
EtherNet/IP™는 2001년에 도입됐으며 현재는 가장 잘 개발된 기술로 검증되고, 완벽한 산업용 이더넷 제조와 자동화 프로세스에 사용할 수 있는 네트워크 솔루션이라 말할 수 있다. EtherNet/IP는 다음과 같은 네트워크 패밀리 중 하나이며 공통산업프로토콜(CIP, Common Industrial Protocol)보다는 상위 층에서 구현이 되고 있다. CIP는 제어, 안전, 동기화, 동작, 구성 및 정보를 포함한 다양한 제조와 프로세스 자동화 응용을 위한 포괄적인 메시지 및 서비스 제품군을 포함하는 개념이다. CIP는 전 세계 수백 개의 공급업체가 지원하는 진정한 미디어 독립 프로토콜이며 CIP는 제조기업 전체에 걸쳐 사용자에게 통합 커뮤니케이션 아키텍처를 제공하고 있다. 미디어 독립성과 함께 각 애플리케이션에 가장 적합한 CIP 네트워크를 선택할 수 있는 기능이 제공된다. 이러한 가능한 선택 중 하나는 이더넷 기술에 CIP를 적용하는 EtherNet/IP란 기술이다. CIP를 이더넷에 적용하는 이유는 무엇인가? 이더넷과 TCP/IP(이더넷 표준)는 전 세계의 상용응용 프로그램에서 볼 수 있는 대부분의 LAN 및 WAN 아키텍처에 사용되는 동일한
지난 9월 유럽연합(UN)이 전 세계 인간 개발(Human Development) 현황에 대한 최신 보고서를 발표했다. 그다지 놀랍지 않은 사실은 전 지구적 위기와 기후 변화에 따른 자연 재해로 각 지역이 큰 타격을 입으면서 최근 몇 년 동안 발전이 이루어지지 못했다는 점이다. 지난 2년 동안 글로벌 인간 개발 지수(Human Development Index, HDI)가 하락하면서 그 이전 5년간의 상승세가 역전됐다. 1990년에 HDI가 처음 도입된 이후 지난 9월 보고서가 발표되기 전까지 HDI는 꾸준히 상승세를 이어왔고, 특히 아시아에서 두드러지는 상승세를 보였다. 업계를 선도하는 기업들은 이처럼 외부의 문제가 계속 발생해도 발전을 이뤄 나가야 한다는 과제를 안고 있다. 첫째, 국제통화기금(IMF)이 “유례없는 위기”라고 표현한 코로나19 팬데믹으로 2020년 전례 없는 비즈니스 환경이 만들어졌고, 그 여파는 지금도 계속되고 있다. 시장이 다소 회복되기 시작할 즈음, 두 번째 중대한 충격이 전 세계 경제와 비즈니스를 강타했다. 유럽에서 발생한 분쟁으로 인해 에너지 및 인플레이션이 유발된 것이다. 공급망 혼란이 지속되면서 상황은 더욱 악화됐다. 이렇듯 거
사람은 ‘눈이 아니라 뇌로 본다’는 말이 있다. 우리의 뇌는 시각·청각·촉각·미각·후각 등 감각 기관에서 들어온 정보를 뇌에서 해석하여 세상을 이해한다. 특히 우리 뇌의 상당부분은 감각기관을 통해서 획득하는 정보의 80% 이상을 차지하는 시각 정보를 해석하는데 사용된다. 그래서 우리가 매일 인지하는 세계는 시각 정보가 ‘모사’된 세계가 아니라 우리 뇌가 ‘해석’한 세계이다. 로봇도 마찬가지이다. 특히 스마트 팩토리에서 다양한 작업물을 다루어야 하는 로봇이 주변 환경과 사물을 스스로 인식할 수 있는 ‘시각 지능’을 갖추어야 하며 이를 ‘로봇 비전’ 기술이라고 한다. ‘로봇 비전’은 사람의 ‘눈’에 해당하는 하드웨어인 ‘카메라’ 기술과 카메라로 들어온 시각 정보를 해석하는 ‘비전 소프트웨어’ 기술로 나눌 수 있다. 이번 편에서는 ‘카메라’의 핵심 원리와 작동 방식 및 종류에 대해 먼저 알아보고 다음 편에서는 로봇 전용 비전 소프트웨어에 대해 기술하려고 한다. 카메라의 핵심 원리 ‘로봇 비전’에서 사용하는 카메라는 크게 2D와 3D로 나눌 수 있다. 2D 카메라는 우리가 일반적으로 사용하는 핸드폰 카메라나 웹카메라 등과 같이 촬영한 3D 공간상의 피사체를 2D 평
센서 및 액추에이터와 같은 단순한 필드장치는 이더넷을 필드버스 인터페이스로 통합하는 것에 대해서 오랫동안 거부를 해왔다. 왜냐하면 이더넷을 산업용으로 사용하는데 있어서 경험이 없고 신뢰성에 대한 믿음이 없으며, 기기 통합의 관점에서 자세히 들여다보면, 제한 요인은 이더넷 인터페이스 자체의 크기, 전력 및 비용이 문제가 되었다. 지난 몇 년 동안 통신기술은 많은 발전을 이루었고, 그간 막연히 품었던 의구심을 해결하기 위해 이더넷 환경을 크게 변화시켰다. 이 백서는 ‘복잡도가 낮은 이더넷’의 개념에 대해 정의를 하고 이 개념을 사용, 센서 및 액추에이터와 같은 에지(Edge) 장치에 신뢰할 수 있는 EtherNet/IP 통신을 제공하는 방법을 설명 하고자 한다. 또한, 브라운필드(Brownfield) 설치가 EtherNet/IP를 에지(Edge)로 가져오는 이점을 활용할 수 있는 미래의 방향을 확인해 줄 것이다. 배경 이 백서는 주로 산업용 이더넷 노드의 하드웨어 비용과 복잡성을 줄이기 위한 새로운 접근 방식에 관한 것이다. 지원해야 하는 프로토콜과 모드 측면에서 소프트웨어의 복잡성 감소를 구체적으로 다루지는 않지만, 이 또한 중요한 연구 분야의 하나이다. 이러
지금까지 동사에서는 기계·공장 전체의 가동률 향상을 목표로 가동 상황의 시각화, 예방 보전에 도움이 되는 소프트웨어를 개발해 왔다. 종래 첫 제품의 양산 시작에는 실제 기기의 가공 프로그램 작성과 시뮬레이션, 그리고 테스트 가공을 할 필요가 있어 양산가공에 이르기까지의 가동률 저하를 피할 수 없었다. 그래서 디지털 공간상에 실제 기기와 동일한 조건을 충실하게 재현하는 디지털 트윈 기술을 개발, 이들 작업을 디지털 공간에서 실시하는 ‘디지털 세팅’으로 생산성 향상을 지향했다. 또한, 공장 내에 있는 기계의 가동 상황 시각화와 가동 실적을 분석함으로써 생산 프로세스의 개선과 생산성 향상에 도움이 되게 했다. 디지털 세팅 1. 디지털 세팅의 개요 유저의 공장에 있는 기계를 사무실의 퍼스널컴퓨터 안에 재현해 가상 공간상에서 프로그램 작성, 간섭 확인, 가공 조건의 조정을 한다. 이것을 동사에서는 디지털 세팅이라고 부른다(그림 1). 2. 도입 효과 디지털 세팅을 함으로써 종래보다 기계의 가동률을 향상시킬 수 있다. 지금까지의 작업 방식에서는 공장 안에서 기계 1대에 작업자 1명이 붙어 워크의 실제 가공뿐만 아니라, 프로그램 작성과 테스트 가공을 하고 있었다. 앞으로
동력이나 운동을 전달하는 기계요소의 상징인 기어는 자동차나 항공기, 공작기계를 비롯해 폭넓은 업계에서 이용되며, 소형화와 고경도화, 고정도화, 복잡화, 저진동화, 저코스트화, 변종변량화 등 여러 가지 시장 요구에 대응하는 것이 항상 요구된다. 오늘날 급속하게 진화하는 자동차의 하이브리드화나 EV(전동)화에 의해 엔진이 모터로 대체됨으로써 감속기구에서 발생하는 기어의 소음이나 진동이 종래보다 주목받게 됐다. 저소음, 저진동 등의 정숙성에 대한 요구를 만족시키기 위해 기어에는 지금까지 이상의 고정도화가 요구되고 있다. 로봇 산업에서도 노동자 부족이나 신형 코로나바이러스 감염증 확대를 배경으로 현장의 인력절감화·자동화가 추진되어 협동로봇 등의 관절부에 이용되는 감속기는 수요 증가 경향이 계속되고 있다. 감속기의 소형경량화와 저진동화를 위해 기어는 소형 및 소모듈화가 추진되어 고정도 가공의 필요성은 더욱 높아지고 있다. 기어를 고정도로 안정되게 고능률 가공하는 기계가 요구되는 가운데, 스위스 아폴터사(Affolter Group SA)는 시계용 기어의 생산으로 오랜 기간 축적한 가공 기술을 토대로 CNC 호빙머신을 개발해 왔다. 특히 최근에는 자동차 업계의 고속 정밀
제조 기업 경영자들은 4차 산업혁명이라는 거대한 변화의 파도를 접하면서 제조기업의 확실한 성공 스토리를 찾고 있다. 이러한 시기에 제조기업 GE가 공개적으로 추진 중인 디지털 트랜스포메이션에 대한 도전은 얼핏 성공 스토리로 보기에는 애매한 상태거나 실패한 스토리로 보일 수도 있다. 지금의 제조기업이 직면한 도전은 육지를 여행하다가 바다를 만난 것과 같이 ‘가늠하기 어려운’ 여정을 눈앞에 둔 백마와 같다. ‘날개 단’ 백마가 되어야 바다를 건널 수 있는 상황이다. 디지털 트랜스포메이션을 가이드하는 산업인터넷컨소시엄은 디지털 트랜스포메이션을 애벌레에서 나비가 되는 과정으로 비유하고 있는데, 이러한 점에서 디지털 트랜스포메이션을 ‘날개’를 다는 것에 비유하는 것은 크게 무리가 없다고 하겠다. 지금 GE의 혁신을 우리는 막 날개를 펼쳐 바다를 건너기 위한 ‘위대한 날갯짓’으로 바라볼 필요가 있다. GE가 디지털 트랜스포메이션을 선언한 후 수많은 기업들이 그 여정을 시도하게 되었다는 점에서 GE는 선구자로서 타 기업이 모방할 사례를 제공하고 있다. 따라서 GE의 도전기를 단순히 성공과 실패로 단정하기보다는 ‘왜’, ‘무엇을’, ‘어떻게’의 시각으로 이해한다면 제조 강
시바우라기계(주)에서는 세계 최대급의 초대형 플라노밀러 MPA-70265 그림 1 (a)를 비롯해 여러 가지 대형 기계를 제작하고 있다. 초대형 기계는 수주 생산이므로 그 활용법을 기계 납입 후에 고민하거나 검토하거나 하는 것이 아니라, 일반적인 공작기계(문형 머시닝센터 MPF-2614FS 그림 1 (b))와는 거래할 때의 사고부터 다르다. 그러면 초대형 공작기계는 무엇이 다른가 하면 기본적으로 특정 업종의 워크, 경우에 따라서는 1종류의 워크 특정 부위를 가공하기 위해 제조되는 전용기이다. 그 대상이 되는 워크는 어떠한 특징을 가지고 있다. 기본적으로 다음의 어느 한 개 또는 여러 개에 해당된다. ①크다 ②무겁다 ③(보통 기계로는) 가공이 어렵다 또는 효율이 나쁘다. 그렇기 때문에 초대형 공작기계는 그러한 모든 문제를 해결해 고도 활용하는 것을 전제로 제작된다. 그렇지 않으면 제작에 1년 5개월~2년, 유저와의 협의를 기초로 기본 구상에서부터 기간을 생각하면 3~4년 이상, 실제 기계의 가동까지라면 5년은 시간이 걸리는 기계를 제작하는 것은 엄두도 낼 수 없다. 보통의 생산 기술자라면 공정을 생각하고 제조하는 기계의 유무를 검토해 없다면 외주를 낸다. 더구
일본에서는 해마다 국지적인 호우가 발생한다. 기억에 생생한 것으로는 2018년 7월 호우와 2020년 7월 호우 등을 들 수 있다. 이러한 국지적 호우가 한번 발생하면 그 지역에 막대한 인적․경제적 피해를 초래하기도 한다. 이러한 장마철에 발생하는 호우의 강수 지역은 선 모양으로 되어 있는 경우가 많아 선상 강수대라고 한다(그림 1). 기상청에 따르면 ‘잇따라 발생하는 발달한 비구름(적란운)이 줄을 이룬 조직화된 적란운군에 의해 수 시간에 걸쳐 거의 같은 장소를 통과 또는 정체함으로써 만들어지는 선 모양으로 뻗은 길이 50~300km 정도, 폭 20~50km 정도의 강한 강수를 동반하는 강수 지역’을 선상 강수대라고 한다. 기상청은 기상 레이더 관측 등으로 선상 강수대를 검지해 웹상으로 선상 강수대의 발생 장소를 공표하는 시스템을 2021년부터 운용하고 있다. 이러한 현황을 파악하는 나우캐스트는 선상 강수대로 인한 위험 지역을 명시해 대피 환기에 매우 효과적이다. 한편, 대피 행동의 리드타임을 보다 길게 확보하기 위해서는 선상 강수대에 동반하는 호우의 예측 정확도를 더욱 향상시킬 필요가 있다. 선상 강수대의 예측 정확도를 향상시키기 위해서는 대기 하층의 수증
대기 중의 에어로졸은 태양광을 직접 산란하고 흡수함으로써 기후에 중요한 역할을 하고 있다. 에어로졸은 구름의 핵으로 기능하며 구름 입자의 특성을 변경해 간접적인 영향을 초래하고 에어로졸의 침착과 강우를 변화시켜 기후의 영향을 예측할 때의 불확실성에 큰 영향을 미친다. 인간의 건강 면에서도 호흡기 계통이나 눈 및 코 점막의 염증 등에 영향을 미치거나, PM2.5와 같은 인위적인 기원의 에어로졸에 의한 꽃가루 알레르기 촉진에 영향을 미치거나 한다는 보고도 있다. 이러한 영향의 정도는 에어로졸의 조성이나 입자지름에 크게 의존한다. 대기 에어로졸은 발생원이 국소적이며 공간․시간적으로 매우 변동이 크다. 더구나 에어로졸의 조성이나 입자지름도 발생원에 의존한다. 그렇기 때문에 대기 에어로졸의 영향을 정확하게 평가하기 위해서는 대기 에어로졸의 조성이나 미세 물리 특성(농도, 입자지름, 형상, 상태 등)에 관한 정보가 필요하다. 라이다는 대기 에어로졸의 연직 분포를 높은 시간․고도 분해능으로 계측할 수 있으며, 여러 지점에서 라이다를 통한 연속적으로 계측함으로써 공간적․시간적인 에어로졸의 확산을 입체적으로 파악할 수 있다. 인위적인 기원의 에어로졸이나 황사, 삼림 화재 에
최근 디지털 트윈(Digital Twin)이 디지털 전환(DX)의 핵심 키워드로 부상하고 있다. 디지털 트윈이란 ‘현실 세계에서 수집한 다양한 정보를 가상 사계에서 분석하고 최적의 방안을 도출해 이를 기반으로 현실 세계를 최적화하는 지능화 융합 기술’을 의미한다. 디지털 트윈 및 디지털 전환 분야는 매우 광범위하다. 이 솔루션은 전체 제조공정 중 제품 생산 공정, 물류(부품 공급, 배포,….) 분야에 적용 가능하다. 본 내용을 통해 디지털 트윈 기술의 적용 방안 및 이에 연계되어 활용될 수 있는 기술에 대해 살펴본다. 기존까지는 공장을 새로 짓거나 특정 라인을 수정할 경우 사전 검토를 위해 물류 시뮬레이션을 활용하고 있다. 하지만 물류 시뮬레이션 분야는 대부분 숙련자 또는 전문가의 의존도가 높은 가정 분석(What-if) 방식을 사용하고, 생산 계획 단계에서 사전 분석 및 검증용으로 주로 사용된다. 그리고 시뮬레이션에 현장 데이터를 반영하는데 대용량 데이터 처리와 시뮬레이션 가속 성능 등의 한계로 다양한 제약 조건이 발생할 수 있다. 이는 디지털 트윈을 구현하기 위해 생산 운영 단계까지 연계하는 과정에 중요한 요소이며 본 내용을 통해 실제 활용
최근 IoT·AI 기술이 발전·보급됨에 따라 절삭가공 중인 공구 상태를 실시간으로 감시해 이상 검지나 공구의 수명 예측․판정을 할 수 있는 기술에 대한 관심이 높아지고 있다. 한편 아직도 많은 절삭가공 현장에서는 다음과 같은 문제가 코스트 개선의 장벽이 되고 있다. 예를 들어 ‘기술자의 노하우에 의존한 공구 수명 판정’이나 ‘가공 수나 가공 거리와 같은 일률적인 공구 수명 설정’이다. 전자는 소리나 절삭칩 형상 등 기술자의 경험에 의존하는 정성적인 기준으로 수명을 판정하고 있기 때문에 기술 전승의 문제나 인력절감화·자동화의 폐해가 되고 있다. 후자는 공구마다 수명 편차가 있기 때문에 공구 수명에 달하지 않아도 교체하는 경우가 많아 공구 코스트 절감의 폐해가 되고 있다. 이와 같은 배경에서 ‘절삭가공 중인 공구 상태의 가시화’나 ‘경험․노하우의 디지털화’ 등에 대한 요구가 많아지고 있다. 이 글에서는 이러한 요구에 대응하기 위해 절삭가공 중인 공구 상태 실시간 감시의 기반 기술로서 밀링 가공 중에 취득한 가속도 데이터를 AI(기계학습)에 의해 해석하고, 공구 상태를 추정하는 방법에 대해 소개한다. 공구 상태 추정의 흐름 우선 이 글에서 소개하는 공구 상태 추정
디지털 가전이나 차재 디바이스 등의 전자부품 시장은 앞으로 더욱 확대될 것으로 예상되고 있으며, 요구되는 기술도 더욱 다양화될 것으로 생각된다. 이와 같이 다양화되는 기술로서 회로나 소자 등의 박막에 패턴을 형성하는 패터닝 기술도 소형화․고밀도화가 요구되고 있다. 기존 기술로는 포토리소그래피에 의한 패터닝이 일반적이지만 박막 등을 사용한 센서 등에서는 소형화․고밀도화에 대응하기 곤란하며, 더구나 레지스트의 도포에서 에칭까지 많은 공정이 필요하고 환경에 대한 부담도 높다. 그래서 최근 레이저에 의한 패터닝이 주목받고 있다. 레이저 패터닝 기술은 포토리소그래피와 비교해 작업 공정을 집약할 수 있기 때문에 공수를 절감할 수 있고 드라이 프로세스가 되기 때문에 환경에 대한 부담도 억제할 수 있다. 그러나 현재의 레이저 패터닝 장치는 2차원 형상에만 대응할 수 있어 자유곡면 등의 3차원 형상에 대한 정밀 패터닝은 곤란하다. 그래서 일본전산머신툴에서는 3차원 형상 레이저 패터닝에 대한 높은 요구에 대응하기 위해 이미 장치화․판매하고 있는 단펄스 레이저를 채용한 미세 레이저 가공기 ‘ABLASER’의 기술을 활용해 레이저 패터닝 과제를 해결하는 동시에, 정밀 3차원 레이
앞 편에서 필자는 스마트 팩토리의 가장 중요한 특징 중 하나로 ‘유연성’을 꼽았다. 그리고 하나의 공정 라인에서 다양한 제품을 생산하는 ‘혼류생산’을 예로 들어 유연한 자동화 공정의 장점을 설명했다. 혼류생산의 핵심은 생산하는 제품이 바뀔 때마다 버튼 한 번만 누르면 전 공정이 자동으로 재구성될 수 있어야 하는 것이다. 하지만 수많은 하드웨어 기계장치가 복합된 생산라인에서 이런 기능을 구현하는 것은 쉬운 일은 아니다. 현재 유연한 생산 공정을 위해 도입한 수많은 로봇 시스템 또한 제품이 바뀔 때마다 오프라인으로 프로그램하여 경로를 수정할 수는 있지만 실시간으로 들어오는 제품에 따라 알아서 경로를 수정하지 못한다는 한계점이 있다. 이러한 한계를 극복하기 위해서 ‘로봇 비전’ 기술이 꼭 필요하다. 로봇 비전이란 ‘비전(vision)’은 ‘눈, 시력, 시각’을 뜻하는 용어로, ‘로봇 비전’이란 ‘로봇의 눈’을 의미한다. 보통 로봇을 사용하기 위해서는 로봇의 움직임을 엔지니어가 일일이 미리 가르쳐 주어야 하는데, 이를 티칭(teaching) 작업이라고 한다. 하지만 로봇이 사람처럼 시각센서(카메라 또는 레이저)를 통해 환경이나 사물을 인식할 수 있게 되면, 작업 공