인터페이스 설계방법 인터페이스 설계 실무에서 주요 요소는 대부분 적용에 적합한 다음과 같은 다섯 가지 단계로 요약할 수 있다. · 단계 1 : SOI - 운용환경관계 식별 · 단계 2 : 시스템 또는 품목 아키텍처 개발 · 단계 3 : 아키텍처 논리적 개체관계 제시 · 단계 4 : 운용 인터페이스 유스 케이스 제시 · 단계 5 : 물리적 인터페이스 특성 제시 이제 인터페이스 설계방법의 각 단계를 살펴보도록 하자. 1. SOI - 운용환경관계 식별 방법론의 첫 번째 단계는 대상시스템(SOI)에 상응하는 인터페이스를 나타내는 사용자 운용 환경 내에서 연관 개체를 식별하는 방법이다. 2. 시스템 또는 품목 아키텍처 개발 외부 시스템과의 논리적 또는 물리적 관계를 나타내기 위한 시스템 또는 개체 아키텍처를 개발하는 단계이다. 3. 아키텍처 논리적 개체관계 제시 시스템이나 개체 아키텍처 또는 확인된 사용자 요구분석에 기초하여 인공시스템과 운용환경과 같은 내부 및 외부 개체 사이에 논리적 개체관계를 제시하는 단계이다. 일반적으로 이 단계는 공식화된 인터페이스를 기술하는 단계이다. 4. 운용 인터페이스 유스
[시스템 인터페이스 분석, 설계 및 통제(3)] 인터페이스 설계방법 [시스템 인터페이스 분석, 설계 및 통제(4)] 인터페이스를 적용한 시스템 능력 구성 인터페이스 표준화 어떤 형태의 시스템 설계와 마찬가지로 인터페이스 설계 또한 비용, 일정, 기술을 최소화하는 한편 특정 요구사항을 충족시키며 리스크를 지원해야 한다. 당신이 신규 인터페이스 솔루션을 설계할 때 발생하는 모든 시기에 당신은 입증되지 못한 인터페이스에 대한 위험을 완화하도록 준비해야 한다. 이러한 리스크에 따른 영향을 감소하는 방법은 이미 입증된 설계 솔루션을 사용하는 길이다. 부가적으로 당신이 선택한 어느 기술 솔루션도 아주 짧은 기간 내에 진부화 되고 있다는 사실을 생각해야 한다. 예리하게 비교해 보면 특히 컴퓨터와 같은 시장에 나와 있는 상용 제품은 완전히 새로운 시스템을 요구하지 않는 한 시스템 능력과 성능을 유지하기 위하여 기술적 업그레이드를 수용할 수 있도록 설계가 요구되고 있다. 산업시장 요구를 충족시키는 하나의 방법은 라인교체품목(LRU)을 모듈화, 상호교환, 융통성 및 유지보수 가능성을 달성하는 표준 인터페이스를 설정하는 길이다. 이것은 무엇을 의미하는가? 컴퓨터는 마더보드(LR
빅데이터 기반 비즈니스의 새로운 기회(1)개인정보 생태계 파괴(불신)의 파급력 빅데이터 기반 비즈니스의 새로운 기회(2)개인정보 생태계 파괴(불신)에 대한 기업 대응 행위와 비즈니스 기회들 1. 들어가면서 2. 개인정보가 빅데이터 기반 비즈니스에 활용되게 된 배경 3. 개인정보 생태계의 파괴(불신) 요인들 4. 개인정보 생태계 파괴(불신)의 파급력 5. 개인정보 생태계 파괴(불신)에 대한 기업 대응 행위와 비즈니스 기회들 4. 개인정보 생태계 파괴(불신)의 파급력 기존 개인정보 생태계의 불신 조장으로 인한 파급 효과는 데이터 수집에 대한 이용자의 부정적 태도, 규제 및 표준화 강도 강화, 매체에서의 부정적 평판 보도, 프라이버시 및 정보보호 시장 가열, 그리고 인터넷의 잠재적 분열화를 야기하는 등으로 영향을 미칠 것이다. 먼저, 이용자의 부정적 태도를 보자. 오범의 자체 조사에 의하면[Ovum Consumer Insights, 2012; Ovum(2014: 18면) 재인용], 평균적으로 설문 대상자인 개인정보를 제공하는 온라인 인구 절반이 인터넷 기업에 대한 불신을 나타냈으며, 평균적으로 약 68%가 향후 개선이 없다면, 데이터 수집을 막을 것이라고 주장했다
빅데이터 기반 비즈니스의 새로운 기회(1)개인정보 생태계 파괴(불신)의 파급력 빅데이터 기반 비즈니스의 새로운 기회(2)개인정보 생태계 파괴(불신)에 대한 기업 대응 행위와 비즈니스 기회들 5. 개인정보 생태계 파괴(불신)에 대한 기업 대응 행위와 비즈니스 기회들 이상에서 언급된 각종 불신에 따른 주요 대응 행위들로는 블록킹 툴 사용, 데이터 수집 없는 앱 비즈니스 출시(스냅챗, 덕덕고, 프랭클리 등) 및 이용, 이용자의 자가 분석 및 데이터의 부가가치화, 이용자 중심 데이터 생태계의 이용 등으로 요약될 수 있겠다. 앞에서 글로벌 인터넷 기업들의 불신 요인들에 대해 시기적으로 사건별로 살펴보았는데, 이들은 점차 개인정보 보호의 중요성을 깨닫기 시작하면서 다양한 대응 활동들을 전개한다. 먼저, 2012년 1월 25일 구글이 발표한 새로운 개인정보 보호 정책은 검색, Gmail, 구글 캘린더, 유튜브 등 60여 개 서비스에 별도로 있던 개인정보 보호 정책을 통합한 것이다. 이를 통해 구글에 로그인한 이용자는 구글의 특정 서비스에서 입력한 정보들의 통합을 동의하게 되는 것이다. 각 서비스를 횡단적으로 일인 이용자가 이용할 수 있게 해 서비스
스텝 모터는 고정자 와인딩에 흐르는 전류의 방향을 전환하는 방식으로 동작하기 때문에 모터의 회전력과 모터 속도를 제어하기 위해 코일에 흐르는 전류를 제어해야 한다. 이 글은 풀 스텝 모드, 하프 스텝 모드, 마이크로 스텝 모드로 구동되는 스텝 모터와 관련하여 디지털 모터 컨트롤과 같은 새로운 기술 발전에 대해서 기술한다. 스텝 모터 드라이버 설계에서 가장 중요한 요건은 매끄러운 동작과 고효율성이다. 스텝 모터를 단순하게 표현하면 다음과 같다. 회전자(rotor)에 영구 자석을, 그리고 고정자(stator)에 두 개의 코일을 가지고 있는 스텝 모터는 고정자 와인딩에 흐르는 전류의 방향을 전환(switching)하는 방식으로 동작한다. 전류의 방향 전환은 고정자의 자계를 변화시키고 회전자는 고정자와 정렬하기 위해 움직이게 된다. 전류가 전환할 때마다 모터는 한 단계씩 이동한다. 따라서 스텝 모터는 모터의 회전력(토크)과 모터 속도를 제어하기 위해 코일에 흐르는 전류를 제어해야 한다. 이 글은 풀 스텝 모드, 하프 스텝 모드, 마이크로 스텝(micro-stepping) 모드로 구동되는 스텝 모터와 관련하여 디지털 모터 컨트롤과 같은 새로운 기술 발전에 대해서 기술
과거 백열전구에서 전자 조명으로 대체된 것은 현재 자동차 산업에서 자동차 조명에 일어나고 있는 변화와 유사해 보인다. 적색 LED가 십여 년 이상 미등에 한정적으로 사용되었지만, 최근 들어 LED 채택률이 주목할 만한 수준으로 늘어난 차량 실내등과 전방 조명 시스템에서도 사용되고 있다. 이 글에서는 최근 괄목할만한 성장을 거듭하고 있는 LED 헤드램프에 대해 알아본다. ⓒGetty images Bank 미국에서는 2013년 말에 대다수 가정에서 흔히 사용되던 40W와 60W 백열전구의 생산과 수입이 금지되었으며(구매는 가능), 75W와 100W 전구는 2012년에 이미 퇴출되었다. 이러한 변화는 EPA가 보다 높은 전기-빛 전환 출력 효율을 요구한 데 따른 것이다. 물론 이에 앞서 일차적 목적은 전력 소모의 14% 가량을 차지하는 가정용 조명의 전기 소비와 그에 따른 전력 생산을 줄이기 위한 것이다(출처 : 미국 EIA). 이후 동일한 양의 루멘 출력을 생성하는 데 기존 전력의 1/8만 소요하는 LED 조명이 백열전구를 대신해 우리 주변에 광범위하게 자리 잡고 있다. 과거 백열전구에서 전자 조명으로 대체된 것은 현재 자동차 산업에서 자동차 조명에 일어나고 있
ⓒGetty images Bank 스텝 모터는 고정자 와인딩에 흐르는 전류의 방향을 전환하는 방식으로 동작하기 때문에 모터의 회전력과 모터 속도를 제어하기 위해 코일에 흐르는 전류를 제어해야 한다. 이 글은 풀 스텝 모드, 하프 스텝 모드, 마이크로 스텝 모드로 구동되는 스텝 모터와 관련하여 디지털 모터 컨트롤과 같은 새로운 기술 발전에 대해서 기술한다. 스텝 모터 드라이버 설계에서 가장 중요한 요건은 매끄러운 동작과 고효율성이다. 스텝 모터를 단순하게 표현하면 다음과 같다. 회전자(rotor)에 영구 자석을, 그리고 고정자(stator)에 두 개의 코일을 가지고 있는 스텝 모터는 고정자 와인딩에 흐르는 전류의 방향을 전환(switching)하는 방식으로 동작한다. 전류의 방향 전환은 고정자의 자계를 변화시키고 회전자는 고정자와 정렬하기 위해 움직이게 된다. 전류가 전환할 때마다 모터는 한 단계씩 이동한다. 따라서 스텝 모터는 모터의 회전력(토크)과 모터 속도를 제어하기 위해 코일에 흐르는 전류를 제어해야 한다. 이 글은 풀 스텝 모드, 하프 스텝 모드, 마이크로 스텝(micro-stepping) 모드로 구동되는 스텝 모터와 관련하여 디지털 모터 컨트롤과 같
잡음에 민감한 아날로그/RF 애플리케이션을 구동할 때는 대체적으로 스위칭 레귤레이터보다 LDO(Low Dropout) 리니어 레귤레이터를 선호한다. 잡음이 낮은 LDO는 주파수 합성기(PLL/VCO), RF 믹서 및 변조기, 고속 고분해능 데이터 컨버터(ADC 및 DAC), 정밀 센서 같이 다양한 유형의 아날로그/RF 디자인을 구동하는 데 사용되고 있다. 그런데 이러한 애플리케이션들의 성능과 감도는 기존 저잡음 LDO의 한계를 시험하는 수준에 이르고 있다. 많은 하이엔드 VCO에서는 전원장치 잡음이 VCO 출력 위상 잡음(지터)에 직접적으로 영향을 미친다. 게다가 전반적인 시스템 효율 요구를 충족하기 위해서 대부분 LDO를 사용해 비교적 잡음이 심한 스위칭 컨버터 출력을 포스트(사후적으로) 레귤레이트한다. 그러므로 LDO의 고주파 PSRR(Power Supply Rejection Ratio : 전원 전압 변동 제거비)의 성능이 무엇보다 중요해진다. 출력 잡음은 낮고 PSRR 성능은 뛰어난 리니어 테크놀로지(Linear Technology)의 LT3042는 부피가 큰 필터링을 필요로 하지 않고 잡음에 민감한 애플리케이션을 직접 구동할 수 있을 뿐 아니라 스위칭
프레스 금형에는 여러 가지 공법이 있는데, 그 중에 프로그레시브 공법이 있다. 일반적이고 보편적인 프로그레시브 금형은 우리나라 기술이 세계적으로 인정받고 있으며, 수출도 많이 하고 있다. 그러나 형상을 가진 프로그레시브 금형은 구조, 이송, 취출에 있어 일반적인 방법이 아니다. 일부 회사에서 형상 프로그레시브 금형을 제작하고는 있지만, 아직 공개된 기술은 없다. 이 글에서는 이처럼 공개되지 않은 형상 제품의 프로그레시브 금형을 다루고자 하며, 특히 동사에서 필자가 직접 설계하여 현장에서 성공적으로 생산한 기술에 대해 소개한다. 지난 회에서 말했듯이 프로그레시브 금형에서는 상향으로 성형하게 되면 구조면에서 복잡해지므로 가급적이면 상향 포밍을 피하는 것이 좋다. 이번에는 상향 성형을 피하는 대표적인 몇 가지 방법에 대해서 소개한다. 이들 방법을 알아두면 자동차 성형품뿐만 아니라 일반적인 유사한 제품들에도 적용할 수 있어 유용하다. 그림 1은 소재 폭 441mm, 피치 160mm, 소재 두께 SPCC 1.2T의 프로그레시브 다이의 레이아웃도이다. 그림 1. 레이아웃도 이 도면은 수년전 일본 가와사끼중공업으로부터 의뢰를 받아 동사에서 납품한 도면이다. 금형 사이즈가
EtherCAT은 다양한 이더넷 프로토콜보다 높은 요구조건의 등시성 전송률 보장, 대역폭 및 간섭 내구성이 우수하지만, CAN과 같은 여타 시스템 버스만큼 보편화되지 못했다. 하지만 앞으로는 EtherCAT의 낮은 구현 비용, 우수한 제품 품질 달성, 장기적인 부품 공급 및 통합 개발환경 제공 등의 장점을 갖춘 XMC4800이 이러한 판도에 변화를 줄 수 있을 것으로 기대된다. EtherCAT은 어떤 실시간 이더넷 프로토콜보다도 높은 요구조건의 등시성 전송률 보장, 대역폭 및 간섭 내구성을 갖추고 있다. EtherCAT은 지속적으로 진화하면서도, 확장된 IP 코어의 기능을 사용하더라도 언제나 하위 호환성을 유지한다는 장점이 있다. 하지만 이러한 이점에도 불구하고 CAN과 같은 여타 시스템 버스만큼 보편화 되지 못하고 있다. 이러한 상황에서 인피니언의 XMC4800 마이크로컨트롤러는 이러한 판도에 변화를 줄 수 있을 것으로 기대된다. 그 이유는 EtherCAT의 낮은 구현 비용, 우수한 제품 품질 달성, 장기적인 부품 공급(적어도 2027년까지) 및 EtherCAT 시스템 버스를 이용한 어플리케이션과 EtherCAT 응용 프로토콜 개발이 용이하도록 통합 개발환
전기자동차, 웨어러블 기기와 같은 애플리케이션에서 배터리 관리 시스템은 매우 중요하다. 특히 배터리 관리 시스템의 심장부라 할 수 있는 멀티셀 배터리 모니터 장치에 대해 살펴보는 것은 상당히 흥미로운 일일 것이다. 따라서 이 글에서는 4세대에 걸친 리니어 테크놀로지의 멀티셀 배터리 모니터의 발전상과 최신 멀티셀 배터리 모니터 LTC6811에 대해 알아본다. 전기 자동차의 상용화 가능성에 대해 제기되던 의문은 오래 전에 잠잠해졌다. 이제 가능성에 대한 질문보다 “이러한 새로운 고전력 배터리 기술이 얼마나 멀리, 얼마나 광범위하게, 그리고 얼마나 깊게 침투할 것인가?”에 대한 질문이 주요 쟁점이 됐다. 하지만, 이에 대한 문제는 그 누구도 확실히 대답할 수 없을 것이다. 하지만 배터리 관리 시스템(BMS), 특히 그 중에서도 심장부에 있는 멀티셀 배터리 모니터 장치의 발달을 살펴보는 것은 흥미로운 주제가 될 것이다. 그러한 과정에서 배터리 백업 시스템에서부터 입는 웨어러블 수트에 이르기까지 다양한 애플리케이션에서 고전압 배터리 팩이 어느 정도 적용될지 단서를 얻게 될지 모른다. 다음에서는 한 제품군에서 전개된 발전을 안전, 정확도, 기능,
최근 자동차의 전장화로 인해 차량의 작동은 물론 엔터테인먼트와 편의 기능들에서 점점 더 많은 전자장치에 의존함에 따라, 간섭 오류 없이 작동하고 차량 내 다른 시스템에 간섭을 일으키지 않아야 하는 요구사항이 더욱 커지고 있다. 따라서 이 글에서는 EMC 및 EMI 간섭 없이 장비 및 요건에 적합한 설계법을 알아본다. 오토모티브 산업 및 개별 오토모티브 제조업체들은 제품을 제조할 때 여러 전자기 호환성(EMC) 요건을 충족시켜야 한다. 이 두 가지 요건은 전자 시스템이 과도한 전자기간섭(EMI)이나 잡음을 방출하지 않아야 하며, 다른 시스템이 방출하는 잡음에 영향을 받지 않아야 한다는 것이다. 이 글에서는 이러한 요건들을 살펴보고 장비 및 요건에 적합하게 설계할 수 있는 몇 가지 요령과 기법을 제안하고자 한다. EMCU 요건 개요 CISPR 25는 차량에 설치할 부품의 방사 잡음 레벨을 평가하기 위해 허용치를 설정한 몇 가지 검사 방식들의 표준이다1), 2). CISPR 25가 제조사에 제시하는 지침 외에도 대부분의 제조업체들은 자체 표준 세트로 CISPR 25 가이드라인을 증대하고 있다. CISPR 25 검사의 주된 목적은 자동차에 설치할 부품이 차량 내 다
원격 또는 배터리 구동식 기기를 비롯해 본질적인 안전회로가 필요한 시스템에서, 저전력 동작은 필수적인 요건이다. 압력, 액체, 먼지 또는 오염물에 대한 내성이 필요할 때, 포텐셔미터나 광학식 엔코더처럼 친숙한 위치 센서를 선택하는 것은 정교하고 값비싼 차폐 및 보호 기능이 없을 경우엔 적합하지 않다. 이때 저전력 모드를 제공하는 새로운 세대의 마그네틱 위치 센서를 도입한다면 설계 엔지니어들은 극한의 저전력 시스템일지라도 지원될 수 있는 정확하고 견고한 위치 감지 시스템을 설계할 수 있을 것이다. 다양한 이유로 인해 수많은 제품에서 저전력 위치 센서에 대한 필수조건이 증가하고 있다. 특히 가전 및 소비재의 경우에는, 정부 규제나 환경 프로그램으로 인해 더 높은 효율성을 추구하는 것이 촉구된다. 저전력 소모 특성은 전혀 다른 제품 분야에서도 다양한 이유로 요구되기도 한다. 원격 설치된 계측기를 비롯해 지하나 잠수 센서에서도, 저전력 특성은 경제성 및 동작을 위한 요건에 해당된다. 이러한 애플리케이션에서, 저전력은 극한 수준의 견고성을 갖추어야 한다. 광범위한 온도 범위, 높은 습도, 높은 압력 또는 오염원 등 때문에 동작 조건은 더 열악해 질 수 있다. 이 글은
이 글에서는 ADAS에서의 끊김 없는 비디오 카메라 시스템 통합에 대해 살펴본다. TDMA(Time Division Multiple Access), 유연한 스타 토폴로지(star topology), 원격 컨트롤 기능을 사용한 다중채널 네트워크 기법에 기반한 MOST 기술은 시스템 솔루션 관점에서 최적의 기능을 제공한다. ADAS(첨단 운전자 지원 시스템)는 자동차 내의 다양한 전기/전자 시스템에 대한 인터페이스로서 자동차의 필수적인 요소로 자리 잡고 있다. 자동차는 인체와 마찬가지로 다수의 기능들을 구현하고 네트워크로 연결해야 한다. 이러한 기능은 카메라, 레이더, 초음파 같은 센서 장치, 프로세싱 장치, 엑추에이터를 포함한다. 복잡한 활용 사례들을 고려하여 자동차 내 각기 다른 영역들이 서로 정보를 교환할 수 있도록 하기 위해서는 적절한 네트워크 인프라를 선택하는 것이 무엇보다 중요하다. 그래야만 효율적인 시스템을 구축할 수 있기 때문이다. 기능적인 관점에서 운전자 지원 시스템은 전통적인 인포테인먼트 시스템의 영역을 확대하는 것이라고 할 수 있다. 그림 1에서 볼 수 있듯 운전자 지원은 E/E 에코시스템의 필수적인 요소가 되고 있다. ADAS와 인포테인먼트
MQTT 및 CoAP는 폭발적으로 성장하는 IoT 시장을 위한 주요 경량 메시징 프로토콜로서 빠르게 부상하고 있다. 각각의 프로토콜은 고유의 장점을 가지고 있으며, 각기 다른 과제와 트레이드오프를 제기한다. 두 프로토콜은 모두 경량 최종 노드를 거의 모든 네트워크에서 필수적으로 요구되는 메쉬형 네트워킹 애플리케이션과 표준간의 통신을 가능하게 하는 게이트웨이 브리징 로직으로 구현하고 있다. 조지 워싱턴 대학(George Washington University)의 필립 하워드(Philip N. Howard)는 최근 발표한 기고문에서 2014년에 이미 커넥티드(connected) 기기의 수가 세계 인구 수를 넘어섰다고 추정하면서 2020년에는 500억 개에 달하는 기기들이 서로 연결되는 사물 인터넷(IoT) 시대를 맞이하게 될 것이라고 전망했다. 달리 말하면, 사람들이 끊임없이 점점 더 많은 기기를 인터넷에 연결함에 따라 지금껏 연결된 적이 없거나 존재하지 않았던 또는 이제 그러한 연결을 핵심 기능으로 사용하는 인터넷에 연결되는 ‘사물’들의 폭발적인 성장이 다가오는 시대가 열리고 있다는 것이다. 이제 문제는 ‘이렇게 연결된 수십 억