사람은 목례나 악수와 같은 신체를 이용한 인사를 나눈다. 이러한 신체를 이용한 인사는 신체적 인터랙션(Interaction)으로 장소 공유, 대화 등의 커뮤니케이션, 협조 작업 등의 시작을 원활하게 한다. 사람은 이 신체적 인터랙션을 통해 서로의 신체적 리듬을 동조시키고 있다고 생각된다. 특히 악수나 포옹 등은 물리적인 접촉을 동반한 신체적 인터랙션으로, 서로의 피부를 접촉시켜 따뜻함을 느끼는 스킨십이다. 따라서 이러한 접촉을 동반한 신체적 인터랙션은 물리적인 거리를 0으로 하고, 심리적인 거리를 근접시킴으로써 서로 받아들일 수 있는 관계의 구축을 촉진하고 있다. 또한 사람과 로봇의 경우에도 로봇이 사람과 자연스러운 악수 등의 인사를 위한 신체적 인터랙션을 함으로써 동일한 효과를 얻을 수 있을 것으로 기대된다. 한편 정보 발신, 원격 커뮤니케이션 지원, 대화 상대 등으로 이용하는 커뮤니케이션 로봇의 실용화가 추진되고 있다. 이러한 커뮤니케이션 로봇은 신체를 가진 미디어로서 사람과 대화 등을 하고 있다. 이를 위해 커뮤니케이션 로봇은 몸짓·손짓, 고개 끄덕임 등의 커뮤니케이션 동작을 신체를 이용해 생성할 수 있으며, 보다 원활한 커뮤니케이션을 실현할 수 있다.
IT·OT 융합이 IIoT와 인더스트리4.0에 의해 추진됨에 따라 ODVA는 EtherNet/IP 및 기타 CIP 네트워크에 연결된 디바이스의 방어기능을 강화할 필요성을 인식했다. 이 추가된 접근방식은 심층적인 아키텍처의 최종방어 수준이다. 이것의 최종적인 목표는 벤더가 상호운용 가능한 EtherNet/IP 디바이스를 구축할 수 있도록 하는 것이다. 이런 디바이스는, 벤더가 자신을 방어할 수 있는 것과 그 디바이스 간의 통신 및 서드파티(해당 분야에 호환되는 상품을 출시하는 회사)와의 통신을 가능케 한다. 이 접근 방식은 ODVA의 사이버보안 EtherNet/IP 사양에 대한 향상된 CIP 보안을 통해 실현하고 있다. 소개 산업 자동화 네트워크는 원래 원격 I/O(Input/Output)장치의 배선을 단순화하고 배선비용을 절감하기 위한 수단으로 개발이 되었다. 시간이 지남에 따라 이러한 디바이스의 리모트 진단과 설정을 가능하게 하기 위해 이것의 접속이 진화했다. 산업 공통 프로토콜(CIP™/ Common Industrial Protocol/ODVA 핵심 프로토콜 평준화 소프트웨어)는 산업용 장치인 컨트롤러(controller/slave용), 액추에이터와 역시
스마트 팩토리는 무선통신 기술이 작동하기에 열악한 환경이다. 이 글에서는 Wi-Fi가 산업용 분야의 변화하는 요구를 충족하기 위해서 어떻게 진화하고 있는지 알아보고자 한다. Wi-Fi가 공장에 처음 도입됐을 때는 디바이스들을 서로 연결해주는 단순한 기능을 담당했다. 하지만 지금은 상황이 완전히 달라졌다. 십년 전 스마트 팩토리를 한산한 시장에 비유한다면 오늘날 스마트 팩토리는 손님들로 북적북적한 시장인 셈이다. 장소는 그대로인데 상황은 급격히 바뀌었다. 시장이 붐비듯 전파는 혼잡해졌으며 신호를 전송해야 하는 거리는 훨씬 더 길어졌다. 이처럼 변화하는 요구사항을 충족하기 위해, 무선 기술은 끊임없이 진화하고 있으며 Wi-Fi도 예외가 아니다. 이 글에서는 공장 디지털화가 어떻게 가속화되고 있으며 새로운 활용 사례들을 지원하기 위해서 Wi-Fi에 어떻게 부담이 가중되고 있는지 설명하고자 한다. 그리고 공장 디지털화와 새로운 활용 사례들이 전 세계 IP 트래픽의 45%와 무선 트래픽의 60~80%를 차지하는 무선 기술인 Wi-Fi에 어떠한 요구사항들을 가중하고 있는지에 대해서도 알아볼 것이다. Wi-Fi는 20년 전만 해도 최대 속도가 54Mbps에 불과했지만,
3D 프린터의 등장으로 금속 절삭가공의 수요는 감소할 것이라는 설도 있었지만, 현재 그러한 경향은 그다지 보이지 않는다. 여전히 금속가공에서는 절삭가공이 많이 이용되고 있다. 단, 그러한 가운데 가공 및 가공기에 요구되는 요건은 변화하고 있다. 그 하나가 최근의 트렌드인 IoT 등의 인터넷 대응이고, 또 다른 하나가 기상 측정 시스템에 대한 것이다(그림 1). 기상 측정 시스템 IoT 대응에 대해서는 주로 측정 결과를 외부 시스템으로 취득하고 싶다는 요구로, 측정 결과의 외부 출력 기능 자체는 예전부터 존재하고 있었지만 현재의 인프라 대응을 요구받고 있다. 예전에는 RS232C 경유로 외부 프린터나 PC로 출력하고 있었지만, 현재는 RS232C가 아니라 네트워크 경유로 데이터를 취득하는 사양으로 변화하고 있다. 그것이 공장 내뿐만 아니라 IoT 등의 흐름에 맞춰 인터넷 대응이 요구되고 있는 것이다. 다른 측면에서는 최근 가공 제품의 트레이서빌리티, 더 나아가서는 가공기의 트레이서빌리티 요구에 대응하기 위해 네트워크 경유의 데이터 취득 및 기록의 보관이 필요해지고 있다. 그러면 이야기를 기상 측정으로 되돌리면, 공작기계의 기상 측정은 대부분이 워크의 센터링,
서론 3D 스마트 센서는 로봇 품질검사시스템에 '시각'이라는 역량을 제공한다. 떠오르는 로봇: 대량 생산 환경에서 산업용 로봇을 사용하면 많은 검증된 이점을 누릴 수 있다. 무엇보다 로봇은 이전에 수작업으로 했던 일들을 자동화한다. 로봇은 높은 수준의 속도와 반복성으로 장시간 작업 비용을 최소화하는 동시에 제품 품질과 생산성을 크게 개선한다. 비전 가이드 로봇 시스템: 비전 가이드 로봇(Vision-Guided Robot, VGR) 시스템은 하나 이상의 머신비전 센서가 장착된 로봇이다. 센서의 안내에 따라 로봇은 가변 목표 위치로 이동한 다음 미리 정해진 기능(예: 통에서 객체를 집어 다른 위치에 놓음)을 수행한다. VGR 시스템은 로봇의 적응력을 크게 개선하고 구현하기 쉽게 만드는 한편, 이전에는 고정 로봇 셀의 설계 및 설정과 관련되었된 비용과 복잡성을 크게 줄여 생산 프로세스를 빠르게 바꾸고 있다. 산업 응용분야 비전 가이드 로봇 기술은 속도, 반복성, 유연성을 제공하여 고품질 공산품에 대해 증가하는 생산 수요를 맞춘다. 픽 앤 플레이스(Pick & Place): 오늘날의 공장에서는 물건을 집어서 두는 경우(픽 앤 플레이스)가 아주 많다. 이러한
ToF 기술 적용된 소형 Basler blaze 카메라 통해 추가 광원없이 작업 수행 대규모 산업용 베이커리에서 다양한 제과류가 생산되고 포장된다. 인력을 보다 효율적으로 활용하고 피킹 능력을 더욱 효율적으로 계획하기 위해 포장된 제과류의 피킹 작업은 자동화가 필요하다. 제품의 종류가 다양하고 제과류의 모양 및 크기가 서로 다르기 때문에 컨베이어 벨트에서 봉지의 위치와 방향을 판단하기가 어렵다. 투명 플라스틱 포장은 낮은 컨트래스트와 반사 때문에 광학 센서로 감지하기 어렵다. 비전 가이드 로봇 시스템은 이같은 까다로운 문제점을 해결해야 한다. 턴키 로봇 솔루션 공급업체인 KINE Robotics는 바슬러(Basler)의 파트너사인 OEM Finland와 함께 산업용 작업 로봇이 다양한 크기와 모양의 포장된 베이커리를 컨베이어 벨트에서 안전하게 잡아 운송 상자에 넣을 수 있도록 하는 컨베이어 추적 시스템을 개발했다. 따라서 수작업으로 제과류를 피킹하던 기존 작업 방식이 3D 비전 가이드 로봇 솔루션으로 대체되어 시스템의 효율성이 높아지고 오류 발생 가능성이 낮아졌다. 컨베이어 벨트 위에 설치된 Basler blaze-101 3D 카메라는 ToF(Time-of-
Zivid Two 3D 컬러 카메라 장착 통해 성공적인 프로젝트 수행 제조업과 물류업계는 혁신을 통해 급격한 변화를 겪고 있다. 이러한 혁신은 바람직할 뿐만 아니라 필수적이다. 제조업과 물류업은 그 어느 때보다 빠르게 움직이고 있지만, 이미 노동력 가용성에 있어 세계적인 위기가 닥치고 있다. 새로운 최첨단 피스 픽킹(piece picking) 시스템은 사람들이 직접 하는 업무 능력을 능가해야 한다. 그리고 사람들은 놀라울 정도로 좋은 시각 체계를 가지고 있다. Ascent Robotics의 Ascent Pick은 빈에 있는 어떤 종류의 물체이든 심지어 비닐로 포장된 물체까지도 정확하게 식별할 수 있어야 했다. 이것은 어려운 비전 시스템 과제였다. Ascent Pick은 일반 제조 및 물류 배치를 위해 개발된 매우 유연한 피스 픽킹 시스템이다. 새로운 AI 적용, 모션 플래닝 전략, 고성능 3D 컬러 비전 카메라 등 동급 최강의 기술과 기술을 활용한다. Zivid Two는 Ascent Robotics가 선택한 3D 카메라다. 이러한 애플리케이션을 위한 유연하고 매우 성능이 뛰어난 피스 픽킹 시스템을 사람들은 원하고있다. 그 결과, 컬러 3D 비전을 포함한 동급
IoT, 센서, AI(Artificial Intelligence) 기술로 빌딩은 점점 더 스마트해지고 있다(그림 1). 이러한 기술들이 모여 새로운 가능성을 열면서 사용자들은 더 간편한 삶을 누릴 수 있다. 빌딩의 접근성, 유연성, 사용자 친화성에 대한 수요가 높아짐에 따라 케이블이나 무선을 사용한 센서/엑추에이터 네트워크(Sensor/Actuator Networks)가 더 중요해지고 있으며, 이는 빌딩의 에너지 효율과 IT 보안을 위해서도 중요하다. KNX 칩셋 기술 KNX는 수년간 빌딩의 통신 및 자동화를 위한 국제표준으로 자리잡았다. 이 표준의 기원은 1990년 초 EIB(European Installation Bus)라는 명칭의 표준에서 찾을 수 있다. 여기에 BATIBUS(프랑스)와 EHSA(네덜란드)와 같은 다른 표준들이 더해져 2006년 KNX 협회가 탄생했다. KNX는 분산형 버스 시스템으로서, 각기 다른 수많은 공급사 및 제조사의 모든 KNX 인증 제품은 상호적으로 네트워크에 연결하고 구성할 수 있다(그림 2). 엔지니어링 툴 소프트웨어(ETS)를 사용하면 모든 KNX 네트워크에서 설계, 구성, 진단을 할 수 있다. 물리적 수준에서 가장 많이
산업 현장에서는 여러 가지 원인으로 인해 안타까운 사건사고가 끊임없이 발생하고 있다. 고용노동부에 의하면 2021년 산재사고 사망자는 828명으로 전년 대비 54명 감소했지만 37개 OECD 회원국과 비교했을 때 여전히 높은 순위를 기록하고 있다. 끊임없이 발생하는 사고로 인해 현재 산업계에서는 무엇보다도 안전에 중점에 두고 있으며 특히, 올해 1월부터 ‘중대재해기업처벌법’이 시행되어 인명사고가 많이 발생하는 건설업과 제조업계는 더욱 안전사고 예방을 최우선시하게 될 전망이다. 한편, 기동장치에 잠금장치를 연결하거나 표지판을 설치하는 LOTO(lockout·tagout) 프로그램을 통해 기계 및 설비의 불시 가동으로 발생하는 다양한 사건사고를 예방할 수 있다. 이 글에서는 산업 현장에서 빈번하게 발생하는 기계 및 설비의 오작동을 예방할 수 있는 LOTO 프로그램을 어떻게 효과적으로 관리할 수 있는지 살펴보고자 한다. LOTO 프로그램 최신 상태로 유지 직원의 안전을 위해서는 지속적으로 LOTO 프로그램을 유지하고 관리해야 한다. LOTO 프로그램에는 기기별 절차 및 LOTO 담당 직원에 대한 연례 감사가 포함되는데, 기기 변경이 발생할 때, 이를 포착하는 시스
우리 사회 인프라는 앞으로 20년 사이에 급속히 노후화가 진행될 것으로 예측되고 있으며, 그 대책으로 예방보전형 메인티넌스 전환에 의한 지속성 확보와 유지 관리·갱신비 감축이 급선무로 되어 있다. 이에 따라 인프라 관리자에게는 프론트엔드가 되는 현장 점검 작업의 성력화뿐만 아니라, 손상 이력의 확인, 점검 조서의 작성, 점검 데이터의 장기 보존 등 백엔드 작업의 효율화·고도화를 도모하는 것도 강하게 요구되고 있다. 필자 등은 일본 내각부의 전략적 이노베이션 창조 프로그램 ‘인프라 유지 관리·갱신·매니지먼트 기술’에서, ‘이륜형 멀티콥터를 이용한 지오태그(geotag)가 붙은 근접 화상을 취득할 수 있는 교량 점검 지원 로봇 시스템의 연구 개발’(이하, ‘동 프로젝트’)에 공동 연구자로 참여해 교량을 대상으로 3차원 모델 상에 점검 정보를 직접 기록·보존할 수 있는 백앤드 작업용 소프트웨어의 시제작 개발을 해왔다. 이 글에서는 그 성과를 중심으로 소개한다. 점검 정보의 3차원 관리에 필요한 기술 지금까지 인프라 구조물 점검 성과는 그림 1 (a)와 같이 도면 위에 손상 부위가 스케치된 손상도, 손상부의 근접 사진과 그 종류·정도를 기재한 표, 부재 번호도 등으
세기의 전환 이후, 산업자동화는 이더넷 기반 네트워킹과 관련해 IP 스택의 채택이 지속적으로 증가하고 있다. 새로운 비전은 클라우드에서 현장 계측기기에 이르기까지 단일 네트워크로의 패러다임 전환을 통해 대폭의 비용절감 효과 및 많은 라이프사이클의 이점을 얻을 수 있다. 산업용 이더넷은 MES, 또는 대부분의 컨트롤러와 사용자 인터페이스, 그리고 수많은 현장의 애플리케이션에 적합하게 IT(정보기술)와 OT(운용기술/산업 장비, 자산, 프로세스 및 이벤트를 직접 모니터링 혹은 제어함으로써 변화를 감지하거나 유발하는 하드웨어와 소프트웨어를 의미하는 용어)를 연결할 수가 있다. 그리고 여기서 말하는 IT와 OT의 용어 차이를 좀 더 디테일 하게 설명하면, IT 시스템에는 다양한 범용 애플리케이션과 네트워크 프로토콜(TCP/IP)이 사용되지만, OT 시스템에는 전용 애플리케이션과 OT 전용의 독립 프로토콜이 사용되는 경우가 많다. 고로 여기서 OT가 문제가 되는데, 이는 전통적인 OT 시스템이 지닌 폐쇄성 때문이다. 또 현재 필드에지(Edge/Sensor & Actuator)에서부터 이더넷의 활용이 제한을 받고 있을 뿐 아니라 이더넷의 채택을 완벽하게 방해 받
현재 자동차를 비롯해 많은 제조 현장에서 로봇이 활약하고 있으며, 인력절감화나 효율화, 제조 제품의 품질 향상 등 여러 가지 효과를 발휘하고 있다. 그러나 로봇이 적용되고 있는 용도를 살펴보면, 아크 용접이나 스폿 용접과 같은 용접 용도, 제품을 들어 운반하는 반송 용도, 나사를 조이거나 하는 조립 용도, 도장 용도 등이 대부분을 차지하고 있으며, 절삭이나 연마에 사용되는 가공 용도에는 로봇 출하 대수의 몇 퍼센트 정도밖에 적용되지 않고 있다. 가공 용도의 로봇 활용에서 가장 많은 사례가 버 제거이다. 비교적 소형의 로봇 암 끝에, 소형 스핀들 모터 및 연삭숫돌 툴이나 초강철 바 등을 장착해, 금속가공품의 가공 단면 버 등을 제거하는 작업이다. 그러나 최근 로봇의 반복 정도(교시된 동작을 반복했을 때, 각 교시 포인트의 정도 오차) 및 절대 정도(지정된 공간 좌표상의 위치에 동작할 때의 정도) 등의 향상과 여러 가지 소프트웨어 개발에 의해, 절삭가공이나 연마가공 그리고 연삭가공에 적용한 로봇 가공 시스템의 도입이 확대되고 있다. 로봇에 의한 절삭가공 시스템에 대해서는 NC 공작기계의 대체로부터, 최근에는 가공 제품의 편차를 계측해 제품 형상에 맞춰 가공하는
인프라 구조물에 설치한 각종 센서의 계측 데이터로부터 구조물의 상태를 추정하는 분석 기술은 사회 인프라 모니터링에서 중요한 역할을 한다. 기존에는 대상 구조물의 물리적인 특성을 고려한 모델을 바탕으로 계측 데이터를 분석하는 경우가 많았다. 최근 센싱 기술과 더불어 정보통신 기술의 발달에 따라 대규모 계측 데이터의 수집 분석이 가능해졌다. 대규모의 계측 데이터와 새로운 분석 기술을 이용한 데이터 구동형 모니터링은 인프라 구조물 분석의 새로운 선택지로 이용할 수 있다. 이 글에서는 교량에 설치된 각종 센서의 계측 데이터로부터 교량에 대한 부하 요인이 되는 통과 차량의 제원을 추정하는 데이터 구동형 분석 기술을 소개한다. 차량 모니터링 시스템의 개요 이 글에서 소개하는 통과 차량 모니터링 시스템은 차량이 통과한 시각을 센서 데이터로부터 검지한다. 또한, 차선·속도·축수·축거리와 같은 통과 차량의 제원을 추정한다. 이러한 추정값은 활하중 계측에서 통과 차량의 중량 추정에 이용된다. 또한, 교통 상황의 모니터링 등에도 이용할 수 있다. 기존 이러한 정보들은 다리의 상판 두 군데에 변형 센서를 설치해 두고, 차량이 통과할 때에 나타나는 피크의 시간차를 이용해서 주로 얻
이더넷은 이미 모든 산업 제어 시스템에 널리 사용되고 있다. 많은 산업용 프로토콜은 독점적인 레이어 2 솔루션을 사용하여 이더넷을 통해 결정적인 문제들을 해결하고 있다. 새로운 IEEE 802.1 TSN 표준은 산업 제어에서 직면하는 동일한 부류의 문제들을 목표로 표준 기반 접근 방식을 위해 독점적 솔루션들을 대체할 것을 약속하고 있다. EtherNet/IP는 결정론적인 성능을 제공하기 위해 항상 상업적으로 이용 가능한 표준 이더넷 기술에 의존해 왔으며 새로운 표준을 활용할 수 있는 유리한 위치에 있다. 이 백서에서는 특정 사용사례에 대해 논의하고 새로운 TSN 표준을 EtherNet/IP 네트워크에 적용하여 향상된 결정성과 성능 제공을 하는 방법을 조사하고자 한다. 또한, TSN 기반 네트워크에서 예상되는 결과를 현재 사용 중인 기술의 결과와 대조해 보려고 한다. 결정론적 이더넷의 개요 결정론적 이더넷은 공장자동화, 프로세스제어, 자동차 네트워크와 같은 크리티컬 한 실시간 응용 프로그램에서 표준 이더넷을 사용할 수 있는 확장된 기능집합을 가리킨다. 이더넷은 “최선의” 네트워크였다. 이더넷이 미션 크리티컬 애플리케이션에 배치될 수 있도록 하려면 시간 동기화,
재해 발생 직후의 초동 조사 및 재해 복구에는 신속한 대응이 요구된다. 이것을 확실하게 하기 위해 UAV를 활용한 초동 조사가 최근 실시되고 있으며, 토털 스테이션 등을 주로 이용하고 있던 지상 측량의 업무 효율이 대폭으로 개선되고 있다. 초동 조사의 효율 개선에는 인공위성, 유인항공기(고정날개·회전날개), UAV(고정날개·회전날개), 차량, 삼각, 백팩 등의 계측 플랫폼을 검토할 수 있다. 재해 부위의 추출 누락 등을 방지할 수 있는 점이나 증수나 붕괴가 있는 장소에서 안전하게 조사할 수 있다는 점에서, 상공에서 계측하는 공중 사진 측량이나 항공 LiDAR의 접근이 유용하다. 그리고 재해 부위가 국소적이고 재해 부위 근처까지 UAV 운반로가 확보되어 있으면, UAV(회전날개)가 신속성과 운용성의 점에서 최적의 계측 플랫폼이 된다. UAV 이용에 의한 측량 업무 효율화 1. 카메라와 비교한 LiDAR의 우위성 측량용 UAV에 탑재되는 센서는 카메라나 LiDAR이며, 각각 장점과 단점이 있다(그림 1). LiDAR은 화상 매칭 등 시간이 걸리는 데이터 처리 없이 점군을 직접 취득할 수 있다는 점에서 화상 계측(SfM/MVS)과 비교해서 우위이다. 또한, SfM