제르미 치즈공장(Jermi Käsewerk, 이하 제르미)은 1889년부터 이어져 온 치즈 업계의 전통 있는 명문 기업이다. 소규모 가족 경영 기업으로 시작해 현재는 탁월하고 차별화된 치즈 특산품으로 유명한 세계적인 기업으로 성장했다. 제르미는 경쟁력 유지를 위해 최첨단 기술과 혁신을 지속적으로 수용해 왔다. 회사는 특정 설비와 생산 라인의 디지털 통합에서 격차를 확인하고 이를 해결하기 위해 선제적으로 Tomorrow Things와 협업했다. 이러한 전략적 결정은 디지털 전환을 위한 제르미의 추진 과정에서 핵심 단계임을 보여준다. 목표는 운용 효율성 향상과 생산 공정 간소화로 명확했다. 특히 회사는 현장의 실시간 데이터에 접근할 수 있는 견고한 플러그 앤드 프로듀스(plug-and-produce) 디지털 트윈 솔루션의 필요성을 인식했다. 이 솔루션은 혁신을 주도하고 장기적인 경쟁력을 확보하는 데 핵심이 되는 통찰과 최적화 잠재력을 제공한다. 포괄적인 디지털화 솔루션을 구현하기 앞서 제르미는 몇 가지 주요 과제에 직면했다. · 전체 생산 라인 모니터링: 예방적 유지보수를 가능하게 하고 원활한 운용을 보장할 수 있는, 전체 생산 라인의 실시간 모니터링이 가능한
신체에 물리적인 부드러움을 갖춘 로봇 암은 신체의 부드러움을 활용해 물체 조작을 학습하고 수행한다. 이 글에서는 이러한 형태학적 계산을 이용한 로봇의 물체 조작 학습에 관련된 연구 성과를 소개한다. 구체적으로는 유연 손목의 설계, 유연 손목을 이용한 물체 조작의 학습, 형태학적 계산에 의한 환경 인식, 환경 중의 물체를 이용한 형태학적 계산을 소개한다. 유연 로봇에 의한 물체 조작의 학습 신체에 물리적인 부드러움을 갖춘 로봇 암은 신체의 부드러움을 활용해 물체와 부드럽게 접촉할 수 있다. 로봇이 물리적인 부드러움을 활용해 물체와 부드럽게 접촉할 수 있으면, 물체나 로봇의 모델, 계측 및 실행의 오차를 접촉을 통해 보상할 수 있다. 물리적인 부드러움을 갖춘 로봇 암은 물체와 부드럽게 접촉하기 때문에 시행착오나 교시에 있어서 다양한 접촉을 적극적으로 시도하고, 안전하게 실패 행동을 시험하여 다양한 학습 데이터를 수집할 수 있다. 기계학습을 이용해 로봇의 제어칙이나 행동칙을 자율적으로 획득할 수 있으면, 모델화가 어려운 물리적으로 부드러운 신체의 제어칙을 획득할 수 있고, 수동으로 설계할 수 없을 정도로 다양한 행동을 만들어 내는 행동칙을 생성할 수 있다. 이상과
좀처럼 실현될 수 없다고 생각했던 (사람이나 동물에 가까운) 놀라운 로봇이 등장하고 있다. 여기서 실현된 기술을 대단한 기술이라고 생각하면 쉽게 손을 댈 수 없다. 하지만 보통의 기술(조합)이나 정도로도 가능할지도 모른다. 많은 사람이 손을 대야 이룰 수 있는 가능성이 넓어지고 다양한 로봇이 탄생한다. 또한 개발 비용과 제조비용을 줄일 수 있다. AI가 주목받는 가운데 수동보행은 역학적인 구조 속에 필요한 계산이 이미 내재되어 있다거나, 컴퓨터가 없어도 충분히 지능적이다 라고 평가되고 있다. 수동 보행의 경우, 걸을 수 있는 원리가 존재한다. 수동 보행 로봇의 연구는 곧 역학 원리의 발견과 그 활용법 개발에 다름 아니다. 이케마타 등은 보폭 일정(착지 시의 고관절 각도 일정)에 의한 안정화 원리를 발견하고, 가느다란 미음 자모형 프레임을 소형 수동 보행 로봇에 부착하는 것만으로 안정된 수동 보행을 실현했다. 기네스 세계 기록에도 인정받아 대단한 로봇일지 모르나, 실현된 기술은 로우 테크이며 수제작 수준이다. 아직 사람이나 동물의 신체에는 여러 가지 역학 원리(힌트)가 숨겨져 있을 것이다. 그 원리를 공학적으로 잘 살리면 지금보다 더 사람이나 동물에 가까운 놀
이번 호는 전편에 이어 블루투스의 신뢰성 특징 및 페어 링 방법, LE보안 및 처리 량, CIP프로필 매핑 등에 대해서 논의코자 한다. 블루투스 입문 1. 신뢰성 (Reliability) Bluetooth의 대표적인 신뢰성 기능은 두 가지이다. 첫째, 채널 사용 방식으로서 주파수 도약 확산 스펙트럼(Frequency Hopping Spread Spectrum, FHSS)을 사용하며, 둘째, 사용하는 주파수 변조 방식으로 가우시안 주파수 편이 변조(Gaussian Frequency Shift Keying, GFSK)를 채택한다. BLE(Bluetooth Low Energy)는 2.4GHz ISM(산업, 과학 및 의료) 주파수 대역에서 3개의 광고 채널과 37개의 데이터 채널을 포함한 총 40개의 채널로 작동한다. BLE는 FHSS 방식을 통해 이 주파수 대역 내에서 각 채널 간 도약(hopping)을 수행한다. BLE 장치는 마스터 장치가 제어하고 슬레이브 장치(들)에게 전달하는 의사난수 도약 시퀀스를 따른다. 이러한 스펙트럼 도약은 초당 최대 1600회까지 발생할 수 있으며, 도약 중 BLE 장치는 현재 채널의 통신 품질을 지속적으로 모니터링한다. 간섭이 발
디지털 전환과 AI 기반 신뢰성 향상의 출발점은 데이터 무결성으로, 이는 인식, 예측, 최적화 단계를 거치며 완성된다. 지속적인 장비 상태 모니터링 도구를 활용해 기존의 수동 데이터 수집 방식을 자동화함으로써, 실행 가능한 실질적인 인사이트를 제공하는 일관되고 신뢰할 수 있는 자산 데이터를 확보할 수 있다. 자산 성능 관리 소프트웨어(Asset Management Software, AMS)를 통해 설비 고장을 예측하고 선제적으로 정비 일정을 수립하며, 근본 원인을 제거한다. 이후 예지정비 기술로 장기적인 운영·유지 관리 전략을 적용해 유지보수 비용을 절감하는 동시에 자산의 신뢰성과 투자 가치를 향상시키고 보전한다. 장비의 라이프 사이클에 기반한 신뢰성 솔루션(Reliability Solution)은 유지 관리 효율과 운영 성능의 잠재력을 극대화하는 체계적인 통합 디지털 여정이다. 더 이상 전통적인 유지보수 전략만으로는 오늘날 산업 현장에서 요구되는 경제성과 효율성을 동시에 달성하기 어렵다. 반면, 선도적인 공장과 기업들은 방대한 데이터를 단순히 수집하는 데 그치지 않고, 디지털 기술을 활용해 이를 실행 가능한 정보와 전략적 의사결정 지침으로 전환하고 있다.
현시점 자동차 산업은 근본적인 전환기에 서 있다. 소프트웨어로 모든 기능을 제어하고 관리하는 ‘소프트웨어 정의 차량(Software-Defined Vehicle, 이하 SDV)’으로의 진화가 가속화되고 있는 것이다. 자동차는 이제 단순한 이동 수단이 아니라, 주변과 끊임없이 연결되는 ‘플랫폼’으로 변화하고 있다. 이는 소프트웨어가 차량의 기능과 가치를 규정하는 핵심 정체성이 되고 있음을 의미한다. SDV, 자동차 산업 패러다임 뒤흔드는 ‘소프트웨어 혁명’ 미국 금융사 모건스탠리(Morgan Stanley)에 따르면 SDV는 2021년 전체 자동차 시장에서 약 3%의 비중을 차지하는 데 그쳤으나, 2029년에는 그 비율이 90%까지 확대될 전망이다. 또한 글로벌 시장조사기관 글로벌마켓인사이트(GMI)는 전 세계 SDV 시장 규모가 2034년까지 4,495억 달러(약 650조 원)에 이를 것으로 내다봤다. 현대자동차그룹을 비롯한 글로벌 완성차 업체들이 소프트웨어 전담 조직 신설, 대규모 기술 인력 확보, 플랫폼 전환 투자 등 새로운 전략을 추진하는 이유가 여기에 있다. 특히 SDV의 등장은 단순히 차량 기능의 고도화 수준을 넘어, 차량 개발의 패러다임 전체를 바
식품 안전과 보안은 여전히 아시아 지역에서 해결해야 할 중대한 과제다. 복잡한 공급망 구조, 높은 식품 손실률, 보관·취급 과정에서의 취약성 등이 기업과 소비자 모두에게 지속적인 영향을 미치고 있다. 여기에 더해 글로벌 공급망이 더욱 정교해지고 규제가 강화되면서 다양한 해결책도 새롭게 부상하고 있다. 이 가운데 견고한 추적성, 보안, 효율적인 재고 관리 등에 대한 요구사항이 급증하고 있다. 이러한 상황에서 자동화와 디지털 추적 기술의 발전은 식품 물류 업계를 변화시키고 있다. 이 같은 변화는 감모, 도난, 콜드 체인 유지관리와 같은 오랜 과제를 해결하는 동시에 식품 품질, 유통기한, 가용성 개선 등에 기여하고 있다. 증가하는 식품 손실과 도난 과제 이 흐름에서 아시아 지역에서 가장 시급히 해결해야 할 과제 중 하나는 수확부터 소비자에게 도달하기까지의 과정에서 발생하는 막대한 식품 손실이다. 세계경제포럼(World Economic Forum)에 따르면, 동남아를 포함한 아시아 전역에서는 비효율적인 취급·보관으로 인한 식품 손실이 전체 생산량의 최대 40%에 달한다. 특히 과일·채소 등 신선식품은 적절한 조건에서 보관되지 않으면 부패 위험이 커지기 때문에 더욱
최근 일본 국내 공장에서는 인력 부족과 경쟁력 확보를 목적으로 비용 절감을 실현하기 위해 생산 라인의 통폐합이 추진되고 있다. 더불어 로봇·IoT 기술의 발전으로 급속한 무인화·자동화가 진행되어 생산 능력이 향상되고 있다. 한편 원자재 가격 상승과 인건비 상승에 대응할 필요도 있어 낭비를 배제한 효율적인 생산을 실현하기 위해 측정 오차를 최대한 줄이는 것이 요구되고 있다. 이 글에서는 안리츠 주식회사가 생산 능력을 향상시키고 또한 측정 오차의 최소화를 실현하기 위해 대응하고 있는 중량 선별기에 대해 소개한다. 이 글에서는 ‘계량’이라는 용어를 ‘질량 계측’의 의미로 사용한다. 중량 선별기의 개요 1. 사용 용도 중량 선별기(그림 1)는 주로 식품·약품용 제조 라인에서 생산되는 상품의 질량을 전수 측정하여 질량의 과부족에 따른 불량품을 후단의 선별 수단에 의해 라인 밖으로 배제하는 검사장치이다. 도입 목적은 상품의 중량·결품 체크에 의한 선별, 충진 손실 최소화를 위한 충진기에 대한 측정값 피드백 제어 외에도, 측정값 경향을 기반으로 한 라인의 이상 감시 등에도 이용되고 있다. 원료의 유효 이용과 포장재 손실 방지, 품질 향상 등 다양한 요구에 대응하고 있으며
지난 호에 이어 이번 호에서는 캐비닛 내 I/O장치, 제어선의 동향과 발전상황, 제어 반 내의 제어배선 방법의 이점과 EtherNet/IP가 인-캐비닛 솔루션에 어떤 영향을 주는가에 대하여 고찰 해 보고자 한다. 캐비닛 내부 I/O 장치용 제어 배선의 트렌드 및 진보 산업 자동화 분야는 급격한 변화를 겪고 있으며, 이에 따라 캐비닛 내부 I/O 장치의 제어 배선과 관련된 기존 방식에 대한 재평가가 필요해지고 있다. 시운전(Commissioning) 워크플로우에서는 정밀함이 핵심이다. 시스템의 기초를 구축하는 과정에서는 구성 요소들을 면밀하게 설정하여 설계 사양 및 운전 조건과 정렬되도록 해야 하며, 이는 이후 전체 시스템 구현의 전 단계로서 향후 발생할 수 있는 문제를 예방하는 데 매우 중요하다. 설계(Design) 워크플로우에서는 효율성 향상이 뚜렷하게 나타난다. 최근의 실무에서는 배선 번호와 I/O 포인트를 체계적으로 할당하고, 오류를 최소화하는 포괄적 방식을 채택하고 있다. 시각적 명확성을 위해 전통적인 배선 방식과 최신 배선 방식을 비교한 도식도도 제공된다. 현대 제어 배선의 특성을 살펴보면, EtherNet/IP 기반 캐비닛 내부 솔루션과 같은 혁신
제약 산업을 위한 맞춤형 자동화 솔루션의 설계, 개발 및 제조를 전문으로 하는 인도의 한 기술 기업은 고객 프로젝트의 일환으로 제약 포장 품질 보증용 실시간 시각 검사 시스템의 개발이라는 과제에 직면했다. 이 시스템은 주사기를 통한 액상 성분 추출용 고무 멤브레인이 있는 의료용 주사약병의 알루미늄 밀봉 캡의 무결성과 정확한 형태를 모두 검사한다. 이 솔루션은 i7 프로세서와 32GB 램을 탑재한 일반 데스크톱 PC로 구성되어 있고, 해당 데스크톱 PC는 랜 케이블과 일반 이더넷을 통해 두 대의 카메라에 연결된다. 이 카메라들은 컨베이어 시스템에 있는 의약품 용기를 육안으로 검사할 수 있는 이미지를 제공하고, 뚜껑의 손상이나 휘어짐, 균열, 얼룩, 주름과 같은 외관상의 결함을 검사한다. 이렇게 수집된 종합적인 이미지 데이터는 FabImage Studio 5.3 Professional 소프트웨어를 사용하여 처리된다. 최종 목표는 프로피넷(PROFINET) IO를 통해 이 이더넷 기반 PC 시스템에서 지멘스(Siemens) S7 PLC로 효율적이고 안정적인 실시간 데이터 전송을 구축하여 PLC가 결함이 있는 주사약병을 배출할 수 있도록 하는 것이었다. 이 과정에서
싱글 페어 이더넷(SPE, Single-Pair Ethernet) 기술의 빠른 발전은 제어 배선 감소와 경우에 따라 제어 배선의 필요 자체를 제거하는 획기적인 진보를 통해 산업 제어반(Industrial Panel Building) 분야에 혁신을 일으키고 있다. 이 글은 ODVA가 2021년 4월에 발표한 SPE/T1S 사양에 기반한 구현 사례를 중심으로, 7개의 도체로 구성된 플랫 리본(flat ribbon) 솔루션이 산업 제어반에 미치는 변화를 조명한다. 이 중 5개의 도체는 패널 내 장비에 전원을 공급함으로써 복잡한 배선을 간소화하고 전통적인 제어 배선 방식에 대한 의존을 줄인다. 나머지 2개의 도체는 SPE/T1S 연결을 통해 장치 간 최적의 통신을 가능하게 한다. SPE 기술과 SPE/T1S 구현을 통해 산업 제어반 제작자는 효율성 향상, 복잡도 감소, 제어 시스템 성능 개선이라는 이점을 얻을 수 있다. 이 글은 산업용 캐비닛 내부에서 싱글 페어 이더넷(SPE)을 사용할 수 있게 하는 핵심 기술을 설명한다. 또한 SPE가 캐비닛 내부에 어떻게 구성되는지, 그리고 이것이 산업용 캐비닛에서 흔히 발생하는 문제를 어떻게 해결하는지를 몇 회에 걸쳐 상세히
제조 산업의 디지털 전환(DX)이 가속화되는 가운데, 단순 시뮬레이션을 넘어 실시간 예측과 자율 제어까지 아우르는 디지털 트윈 솔루션이 주목받고 있다. 그 중심에 선 플랫폼이 바로 ‘PINOKIO’다. 공정 흐름 시뮬레이션(Pino SIM), 실시간 디지털 트윈(Pino DT), AI 기반 예측·분석(Pino AI)까지 통합한 이 플랫폼은 SK하이닉스, LG전자 등 복잡한 제조 환경에서 실효성을 입증하며 산업계의 주목을 받고 있다. 제조 기준정보 입력부터 예지 보전, AI 기반 의사결정까지 전 과정을 커버하며 기존 솔루션의 한계를 극복한 PINOKIO는, 스마트 팩토리 실현을 위한 결정적 해법으로 자리매김하고 있다. 이 글에서는 PINOKIO의 기술 구조와 실제 적용 사례, 그리고 산업적 파급력을 집중 분석한다. 제조 산업 전반에서 디지털 트윈 기술이 핵심 전략으로 부상하는 가운데, 차세대 물류 디지털 트윈 솔루션 ‘PINOKIO’가 주목받고 있다. PINOKIO는 최신 기술 흐름을 반영하여 개발된 솔루션으로, 기존 상용 시스템의 한계를 극복하고 스마트 제조로의 전환을 가속화하는 데 최적화된 기능을 제공한다. 기존 디지털 전환(DX) 솔루션이 주로 3D 모델
산업 현장에서 컨베이어 벨트는 단순한 운반 수단을 넘어, 공정 흐름과 생산 효율을 좌우하는 핵심 인프라로 자리잡고 있다. 특히 물류 및 벌크 자재 운반 라인에서는 벨트 위의 하중과 체적 정보가 곧 시스템의 생산성과 직결된다. 페펄앤드푹스가 개발한 Volume3D는 이러한 필요에 정확하고 유연하게 대응하는 3D 체적 측정 솔루션이다. 컨베이어 하중, 이제는 3D로 본다 Volume3D는 LiDAR 기반 고정밀 측정 기술을 통해 컨베이어 상의 물체 윤곽을 실시간으로 인식하고, 체적과 부피 유량 데이터를 추출한다. 여기에는 R2000과 R2300 모델이 사용되며, 전자는 ±3%의 정밀도로 고정밀 측정이 가능하고, 후자는 초당 100회 스캔 속도로 빠르게 움직이는 대상도 놓치지 않는다. 하나의 측정 지점에는 최대 3대의 LiDAR 센서를 동시 운용할 수 있어, 그림자 효과를 최소화하고 복잡한 형상의 대상도 입체적으로 파악할 수 있다. 속도와 부피를 동시에, MSEU + 로터리 엔코더 구조 윤곽 데이터만으로는 완전한 3D 분석이 어렵다. 이를 해결하기 위해 Volume3D는 컨베이어 속도 데이터를 함께 취득한다. 페펄앤드푹스의 ENI58IL 인크리멘탈 로터리 엔코더를
화학 공정 산업에서 전기 부품을 안전하게 사용하는 일은 여전히 높은 진입장벽을 요구하는 과제다. 인간과 환경, 플랜트의 안전을 지키면서도 효율을 포기하지 않아야 하기 때문이다. 이런 딜레마 속에서 퍼지(Purge) 및 양압(Pressurization, Ex p) 기술을 적용한 인클로저 솔루션은 실질적인 돌파구로 주목받고 있다. 이 솔루션은 안전성과 비용 효율, 유연성을 결합해 극한 환경에서도 표준 전기 장비를 사용할 수 있는 가능성을 열어준다. 퍼지 및 양압 기술의 작동 원리 퍼지 및 양압 보호는 Ex 영역의 전기 장비를 효과적으로 보호하는 방식이다. 원리는 명료하다. 먼저 인클로저 내부를 깨끗한 공기 또는 불활성 가스로 퍼지(purging)하여 가연성 가스를 제거한 후, 소량의 양압(몇 밀리바 수준)을 유지함으로써 외부의 폭발성 물질 유입을 차단한다. 이때 압력 유지, 밸브 작동, 통풍구 관리 등은 통합 제어 시스템을 통해 자동화되며, 압력 손실이 발생하면 시스템은 경고 또는 자동 셧다운을 실행해 사고를 방지한다. 최신 시스템은 누출 보정 기능까지 갖춰 안정성을 한층 끌어올렸다. 특히 이 기술은 가스뿐 아니라 분진 위험 지역에도 대응할 수 있으며, PLC,
이번 호에서는 CIP Safety의 5G 전송 측정 구성 및 조건을 설명하고, 제조 장비 간 5G 기반 CIP Safety 통신 평가 결과에 대해서도 함께 다룬다. CIP Safety의 5G 전송 측정 구성 및 조건 측정 구성의 변형은 그림 1과 2에 제시돼 있다. 성능 측정 조건은 다음과 같다. · CIP Safety 연결 수: 안전 라인 컨트롤러를 대상으로 하여 세 개의 안전 컨트롤러가 송신자로 동작하며, 반대로 각 안전 컨트롤러가 대상이 되고 안전 라인 컨트롤러가 송신자가 되는 형태로 CIP Safety 연결을 구성했다. · EPI (CIP Safety 통신 주기): 안전 프로세스 통신의 EPI는 60ms로 고정 설정했다. · 데이터 크기: 본 용도에 필요한 CIP Safety 패킷은 46바이트로 설정했다. · 통신 부하: 실제 사용 환경을 시뮬레이션하기 위해, CIP Safety 통신 외에 표준 프로세스 통신을 통해 통신 부하를 추가했다. 각 안전 컨트롤러 간(안전 라인 컨트롤러 포함)에는 송신자와 수신자 역할로 각각 최대 12개씩, 총 24개의 표준 프로세스 통신 연결을 구성했다. RPI(Request Packet Interval)는 1ms, 5ms