헬로티 이동재 기자 | 국내 연구진이 기존 반도체 소자의 소비전력 및 정보밀도를 획기적으로 개선할 수 있는 기술을 개발했다. 차세대 전자소자인 멤커패시터 및 멤컴퓨팅 시스템 개발에 기여할 것으로 기대된다. 광주과학기술원(GIST) 신소재공학부 이상한 교수 연구팀은 반도체의 기본 소재로 활용되는 페로브스카이트 재료의 격자 변형을 이용해 유전상수를 단계적으로 조절하는 데 성공했다. 유전상수는 재료의 고유한 성질이지만 유전체 재료에서 이러한 유전상수가 조절된다면, 메모리소자의 저장단계가 조절 가능하므로 기존 반도체 소자의 소비전력 및 정보밀도를 획기적으로 개선할 수 있다. 페로브스카이트(ABO3) 구조의 일부 유전재료에서 격자변형에 따라 상유전성에서 강유전성으로 상전이 될 수 있음이 최근 이론계산 논문들을 통해 보고됐다. 그 중에서도 SrMnO3 (SMO)는 격자 변형에 따라 강유전성뿐만 아니라 강자성으로의 다중상변이가 가능한 재료이며, 이러한 두 강성의 강력한 조합은 차세대 다중메모리소자로써 활용 가능성이 높은 재료로 각광받아 왔다. 그러나 기존의 선행연구들에서 이러한 재료를 실험적으로 구현했을 때, 격자 변형에 따른 큰 누설전류 및 구조적 결함 발생으로 인해
헬로티 이동재 기자 | 손상된 기능을 스스로 치유하는 초박막 반도체 소자가 소개됐다. 자가치유 특성을 통해 반도체 소자의 성능을 획기적으로 늘릴 단초가 될 것으로 기대된다. 한국연구재단은 차승남 교수(성균관대학교) 연구팀(박상연 박사, 제 1저자)이 장승훈 박사(한국화학연구원)와 홍승현 교수(국민대학교)와의 공동연구로 기존 금속전극 대신 2차원 황화구리 (CuS) 전극을 새로이 제안, 자가치유 특성을 갖는 2차원 이황화 몰리브덴(MoS2) 기반 전자소자를 제작해 소자의 성능을 크게 개선하는데 성공했다고 밝혔다. 2차원 반도체 소재는 유연성과 투명성 등으로 인해 차세대 반도체 소재로서 주목받고 있으나, 원자층 수준의 얇은 두께로 인해 반도체 소자 제작 공정에서 손상되기 쉽다. 특히 전극과 2차원 반도체 계면의 결함과 변칙성으로 인해 전자의 효과적인 이동이 어려워져 소자 특성이 크게 저하될 수 있다. 이에 연구팀은 2차원 반도체 소재 결함의 자가치유 성능을 지니는 전극-반도체 소재 시스템을 제안했다. 2차원 이황화 몰리브덴의 결함은 대부분 황 원자의 결핍에 의해 발생된다. 황화구리 전극은 소재 내에 존재하는 잉여 황 원자를 2차원 이황화 몰리브덴의 황 원자 결핍
헬로티 이동재 기자 | 국내 연구진이 먼지처럼 작은 수십 나노미터 크기부터 A4용지 크기까지 반도체 인쇄가 가능한 새로운 공정기법을 개발했다. 기존보다 최대 1만배 이상 빠르고 정확한 공정으로 반도체 소자 생산성을 획기적으로 늘릴 것으로 기대된다. DGIST 장경인 교수팀은 한국뇌연구원 라종철 교수팀과 한국생산기술연구원의 금호현 박사팀과 공동으로 반도체 및 소자 제작을 위한 새로운 전사인쇄(轉寫印刷) 공법을 최초 개발했다고 지난 12일 밝혔다. 최근 웨어러블 디바이스나 곡면 디스플레이 기술 등이 발전하면서 고도화된 반도체 소자 제작기법이 요구되고 있다. 이에 더욱 정확하고 신속한 전사인쇄 공법의 개발 필요성이 대두되고 있다. 전사인쇄는 서로 다른 기판에서 제작된 소자들을 새로운 기판으로 옮겨 통합시키는 반도체 제작의 필수 공정인데, 복잡한 전자 소자 제작 시 광범위하게 사용된다. 종래 사용된 습식 전사 인쇄 공법은 기판 위에 소자를 제작 후 부식액을 이용해 아래층을 녹여 없앤 후 새로운 기판으로 옮기는 방법이다. 하지만 기판의 층 면적이 큰 경우, 녹이는 데 시간이 오래 소모되는 점과 소자 모양의 왜곡 가능성 등 대량생산의 한계가 있었다. 이를 대체하기 위해
헬로티 조상록 기자 | KAIST는 전기및전자공학부 김상현 교수 연구팀이 모놀리식 3차원 집적의 장점을 극대화해 기존의 통신 소자의 단점을 극복하는 화합물 반도체 소자 집적 기술을 개발했다고 6월 14일 밝혔다. 모놀리식 3차원 집적은 하부 소자 공정 후, 상부의 박막층을 형성하고 상부 소자 공정을 순차적으로 진행함으로써 상하부 소자 간의 정렬도를 극대화할 수 있는 기술로 궁극적 3차원 집적 기술로 불린다. 반도체 소자에서 통신 신호, 양자 신호는 아날로그 형태의 신호다. 신호전달 과정에서 신호의 크기가 약해지거나 잡음이 생겨 신호의 왜곡이 생기기도 한다. 따라서 이러한 신호를 주고받을 때 고속으로 신호의 증폭이 필요한데 이러한 증폭 소자에서는 초고속, 고출력, 저전력, 저잡음 등의 특성이 매우 중요하다. 또한 통신 기술이 발전함에 따라 이를 구성하는 시스템은 점점 더 복잡해져 고집적 소자 제작기술이 매우 중요하다. 통신 소자는 통상적으로 두 가지 방식으로 구현된다. 실리콘(Si)을 사용해 집적도 높은 Si CMOS를 이용해 증폭 소자를 구현하는 방법과 III-V 화합물 반도체(주기율표 III족 원소와 V족 원소가 화합물을 이루고 있는 반도체)를 증폭 소자로